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Elements of the first-principles-based theory of Wei et al. (J. Fluid Mech., vol. 522,
2005, p. 303), Fife et al. (Multiscale Model. Simul., vol. 4, 2005a, p. 936; J. Fluid Mech.,
vol. 532, 2005b, p. 165) and Fife, Klewicki & Wei (J. Discrete Continuous Dyn. Syst.,
vol. 24, 2009, p. 781) are clarified and their veracity tested relative to the properties of
the logarithmic mean velocity profile. While the approach employed broadly reveals
the mathematical structure admitted by the time averaged Navier–Stokes equations,
results are primarily provided for fully developed pressure driven flow in a two-
dimensional channel. The theory demonstrates that the appropriately simplified mean
differential statement of Newton’s second law formally admits a hierarchy of scaling
layers, each having a distinct characteristic length. The theory also specifies that these
characteristic lengths asymptotically scale with distance from the wall over a well-
defined range of wall-normal positions, y. Numerical simulation data are shown to
support these analytical findings in every measure explored. The mean velocity profile
is shown to exhibit logarithmic dependence (exact or approximate) when the solution
to the mean equation of motion exhibits (exact or approximate) self-similarity from
layer to layer within the hierarchy. The condition of pure self-similarity corresponds
to a constant leading coefficient in the logarithmic mean velocity equation. The
theory predicts and clarifies why logarithmic behaviour is better approximated as
the Reynolds number gets large. An exact equation for the leading coefficient (von
Kármán coefficient κ) is tested against direct numerical simulation (DNS) data.
Two methods for precisely estimating the leading coefficient over any selected range
of y are presented. These methods reveal that the differences between the theory
and simulation are essentially within the uncertainty level of the simulation. The
von Kármán coefficient physically exists owing to an approximate self-similarity
in the flux of turbulent force across an internal layer hierarchy. Mathematically,
this self-similarity relates to the slope and curvature of the Reynolds stress profile, or
equivalently the slope and curvature of the mean vorticity profile. The theory addresses
how, why and under what conditions logarithmic dependence is approximated relative
to the specific mechanisms contained within the mean statement of dynamics.

1. Introduction
One may reasonably assert that the science and engineering of wall-bounded

turbulent flows has been hindered by the lack of a guiding theory that is both mathe-
matically cogent and mechanistically descriptive. This assertion largely motivates
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the present authors’ research to advance a first-principles-based theoretical framework
that not only embraces empirically quantified behaviours but also reveals how and
why these behaviours occur. The present effort explores the veracity of this theory
relative to the logarithmic-like properties of the mean velocity profile, including the
von Kármán constant.

The logarithmic equation for the mean velocity profile in statistically stationary
turbulent wall-bounded flow is most often given by

U

uτ

=
1

κ
ln

(
yuτ

ν

)
+ B, (1.1)

where U is mean axial velocity, uτ is the friction velocity, ν is the kinematic viscosity,
y is the distance from the wall and κ and B are constants (e.g. Tennekes & Lumley
1972; Pope 2000). Variants of (1.1) include an offset to the y+ = yuτ/ν coordinate
inside the logarithm (George & Castillo 1997; Oberlack 2001; Spalart, Coleman &
Johnstone 2008). Logarithmic-like dependence finds considerable empirical support.
Owing to this, a variety of mean profile equations, including power-law forms that are
approximated by (1.1), have been constructed via a number of non-rigorous means
(e.g. see Panton 2005; Buschmann & Gad-el-Hak 2007 and the references therein).
Typically (1.1) is taken to be valid in some region that is simultaneously not too
close and not too far from the wall. The precise validity of (1.1) and the wall-normal
bounds over which it might hold are, however, largely unresolvable by approaches
not grounded in first principles. This is because such approaches invariably rely
upon hypotheses of a mathematical or physical nature having unknown, reasonably
questionable or untestable validity (e.g. see Fife et al. 2009). The present approach
addresses logarithmic dependence and a number of affiliated issues through an
elucidation of the mathematical properties of the mean differential statement of
Newton’s second law.

The constant κ holds special significance in the logarithmic mean velocity equation.
Effectively it represents the slope of the profile, and thus is a measure of how
the turbulence distributes mean momentum as a function of y. (In the prevalent
inner/outer/overlap layer-based approach to obtaining (1.1), originally formulated by
Millikan (1939) and Izakson (1937), 1/κ is equal to the weighted wall-normal gradient
of U under inner and outer normalization simultaneously, e.g. 1/κ = y+dU+/dy+.) The
value of κ also has considerable practical importance as it appears in many engineering
formulae relating to flow development and frictional drag (e.g. Schlichting & Gersten
2000). Over the years the idea that κ might be a universal constant for turbulent wall-
flows has, at least in part, promoted considerable investigation into its presumably
precise value. This has been primarily accomplished through increasingly careful
measurements of the mean velocity profile (e.g. Zagarola & Smits 1998; Osterlund
et al. 2000; Nagib & Chauhan 2008). Of course, empirical data can never provide
positive proof for the universality of κ , or even that it is a constant. Indeed, recent
experimental evidence indicates that κ varies from one wall-flow to the next (e.g.
Nagib & Chauhan 2008).

The mean velocity profile is, however, a solution of the appropriately simplified
Reynolds averaged Navier–Stokes equation. It is thus natural to expect κ to have
a well-defined relationship to the properties of this equation. Consistent with this,
detailed consideration of the mean momentum balance yields an expression for κ in
terms of a scaled second derivative of the Reynolds stress (Fife et al. 2005a). The
validity and ramifications of this equation are explored herein using data from direct
numerical simulations (DNSs).
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In what follows, the primary analytical results to be explored are first concisely
presented and their nature and consequences clarified. The veracity of these analytical
results are then explored using DNS data.

2. Analytical results
At the outset it is relevant to note that the present approach has been used to

elucidate the behaviour of the solutions to a number of turbulent wall-flow problems,
as well as to successfully reveal scaling behaviours directly from the governing
equations (Wei et al. 2005a,b,c; Klewicki et al. 2006; Wei, Fife & Klewicki 2007;
Metzger, Adams & Fife 2008). Thus, it has broader application than discussed herein.

2.1. Momentum equation

The analysis below is primarily for statistically stationary, fully developed, incom-
pressible, pressure driven turbulent flow in a two-dimensional channel. The companion
analysis associated with turbulent Couette flow has been presented in detail elsewhere
(e.g. Fife et al. 2005a). At points throughout the presentation results from the Couette
flow analyses will be cited for comparison.

The height of the channel is 2δ, x is the mean flow direction and y is normal to
the channel wall. The analysis begins with the Navier–Stokes equations, which is the
appropriate differential statement of Newton’s second law. Applying the Reynolds
decomposition, time averaging and simplifying for the given problem statement yields
the x component force balance,

0 = −dP

dx
+ μ

d2U

dy2
− ρ

d〈uv〉
dy

, (2.1)

where U and P denote the mean axial velocity and pressure respectively, 〈uv〉 is the
time averaged correlation between the axial and wall-normal velocity fluctuations
(u and v respectively), μ is the dynamic viscosity and ρ is the mass density.
Neither the y nor the z components of the momentum equation enter into the
analysis.

Equation (2.1) contains two unknown functions and thus is unclosed. Considerable
amounts of information can, however, be ascertained regarding its solutions. Among
these are the conditions for the existence of a logarithmic-like profile, including a
formula for the von Kármán constant (coefficient). Results elucidated from (2.1)
pertinent to these topics are now concisely presented.

The inner-normalized form of (2.1) is given by

0 =
1

δ+
+

d2U+

dy+2
− d〈uv〉+

dy+
, (2.2)

where the superscript ‘+’ signifies normalization by the friction velocity uτ =
√

τw/ρ

and kinematic viscosity ν = μ/ρ. The form of (2.2) utilized in previous publications
is given by

0 = ε2 +
d2U+

dy+2
+

dT +

dy+
, (2.3)

where T + = −〈uv〉/u2
τ and ε2 = 1/δ+. Boundary conditions associated with (2.3) are

U+ = T + =0 and dU+/dy+ =1 at y+ = 0, and T + = dU+/dy+ = 0 at y+ = 1/ε2.
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2.2. Self-similar layer hierarchy

Equation (2.3) admits a hierarchy of scaling layers also called patches, whose existence
and properties are central elements of the analysis (Fife et al. 2005a,b). The hierarchy
is revealed by considering the test function

T β(y+) = T +(y+) + ε2y+ − βy+, (2.4)

where β is a small parameter discussed further below. For the sake of clarity, it
is noted that β is an identifying superscript on T β , not an exponent. The choice
of (2.4) may seem to be quite arbitrary. To the author’s knowledge, however,
it is the simplest that serves the purpose of revealing the entire hierarchy of
scaling patches. Inserting the transformation (2.4) into the momentum equation (2.3)
yields

0 =
d2U+

dy+2
+

dT β

dy+
+ β, (2.5)

which is still exact.
Revealing that (2.3) formally admits a hierarchy of scaling layers draws upon the

fact that for a wide range of values of β , (2.5) may be rescaled to an exact parameter
invariant equation, with the rescaled variables attaining values on the patch that are
also invariant. Results from the similarity analysis of differential equations indicate
that parameter invariant equations with invariant boundary values yield universal
solutions (e.g. Hansen 1964; Cantwell 2002). This property of well-posed differential
equation problems does not always hold for the turbulent wall-flow equation (2.4)
because it is underdetermined (one equation with two unknowns). Nevertheless, the
similarity properties of this equation under various scalings point to solutions that
are universal in order of magnitude. A complication is the fact that the dominant
terms in the equation change with distance from the wall in ways that, in general,
are not a priori known (Fife et al. 2005b; Wei et al. 2005a). This reality factors
significantly since it necessitates a rescaling in order to construct a parameter free
invariant equation.

For a range of β , T β will exhibit a single local maximum at a position yβ
m somewhere

in the flow domain. This is known from the boundary conditions on T +. As each
admissible yβ

m is approached from below there is seen to be a scaling, depending on β ,
and a corresponding layer Lβ , nominally centred on yβ

m within which all three terms in
(2.5) are of the same formal order of magnitude. This also occurs relative to (2.2) as T +

approaches its peak, and is associated with a balance breaking and exchange of mean
forces having significant physical implications (Wei et al. 2005a; Klewicki et al. 2007).
The required rescaling is most easily accomplished using differential transformations.
While more general differential transformations reveal the full extent of possibilities
(Fife, Klewicki & Wei 2009), the simplest yielding the basic scaling behaviour of the
layer hierarchy is given by

dy+ = β−1/2dŷ, dT β = β1/2dT̂ β . (2.6)

Subsequently applying this transformation to (2.5) yields the desired parameter-free
invariant equation,

0 =
d2U+

dŷ2
+

dT̂ β

dŷ
+ 1, (2.7)

for each value of β in its admissible range (Fife et al. 2005a,b). No approximation is
used in deriving (2.7); it is exact. Moreover the three terms in (2.7) can be evaluated
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at the location y+ = yβ
m, i.e. ŷ =0, and shown to be parameter independent and O(1)

in magnitude (specifically −1, 0, 1). These terms have the same order of magnitude
in a neighbourhood of ŷ = 0 as well. This is strong evidence that the transformation
(2.6) provides a scaling layer containing that point, and that there is an order of
magnitude invariance of the solutions U+(ŷ) and T̂ β as one passes from one such
layer to another, i.e. as β varies. In this regard, note that the width of each Lβ can
only be determined to order of magnitude. The values of the terms in (2.7) on the
periphery of each Lβ are also revealed to be invariant when these positions on the
periphery are consistently located a characteristic length, ŷ =O(1), from the patch
centre, ŷ = 0 (Fife et al. 2005b; Wei et al. 2005a; Fife et al. 2009).

Given the second relation in (2.6) and the fact that at each yβ
m,

β =
dT β

dy+
=

dT +

dy+
+ ε2, (2.8)

it can be shown that the width of each Lβ layer is

W (y+) = O(β−1/2), (2.9)

and that these layer widths asymptotically scale with the distance from the wall,
y (Fife et al. 2005a,b). This attribute of the scale hierarchy has mathematical and
physical significance as it provides a fundamental reason for the distance from the
wall length scale inherent to turbulent wall-flows that is often assumed in scaling
arguments and long associated with logarithmic dependence. Its also resembles many
of the features assumed in the attached eddy hypothesis of Townsend (1976), and
embodied in the associated models of Perry & Chong (1982) and Perry & Marusic
(1995).

Since there is a continuum of layers, parameterized by β , the question arises as to
what happens in the intersection of two layers. This is made clearer by recognizing
that the solution in Lβ depends on both β and ε, and the asymptotics are with
respect to both parameters approaching 0. Let us simply consider the case that the
two parameters are connected by a power law, β = εb, so that b is the new parameter
in place of β . Suppose the two layers in question correspond to parameters β1 and
β2 > β1. They have widths of the orders W1 = ε−b1/2 and W2 = ε−b2/2. The ratio is
W1/W2 = ε(b2−b1)/2. Fix the bs and let ε → 0. The ratio also approaches 0, so that for
small enough ε, there is no more overlap. If ε is small but not that small, there will
be an overlapping region where both scalings can be used to represent approximate
solutions. In any case, within a given Lβ , the approximation constructed for that
layer will become less accurate as one moves away from the centre point yβ

m. This is
reminiscent of aspects of Taylor series expansions, but is actually quite different.

Relation (2.8) reveals that the Lβ depend directly upon the properties of the
Reynolds stress gradient. In particular, the decay rate of this gradient establishes
the admissible range of β values, as well as the corresponding range of y+ values
over which the hierarchy exists. As depicted in figure 1 this latter range is given
by 30 � y+, y/δ � 0.5 (Fife et al. 2005b). At the upper end of this range the layer
thickness (characteristic length) is maximal. For future reference, the bounds of the
layer hierarchy are also depicted in figure 2. This figure plots the function y+dU+/dy+

that is often used in exploring issues associated with logarithmic dependence. The
data in this figure are from the channel flow simulation of Hoyas & Jimenez (2006) at
δ+ = 547, 934 and 2003. Figure 2 reveals that the upper and lower boundaries of the
hierarchy bracket the region typically associated with logarithmic dependence, and
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y+ = 26–30 y/δ ~ 0.5

Lβ

Lβ

Lβ

yβ
m

yβ
m

yβ
m

y0

Figure 1. Schematic depiction of the continuum of scaling layers formally admitted by the
mean momentum equation. Note that the invariant form (2.7) is valid on each Lβ .
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Figure 2. Mean velocity profile slope indicator function y+dU+/dy+ as computed from the
data of Hoyas & Jimenez (2006): δ+ = 547, – – –; δ+ = 934, - - - -; δ+ = 2003, —–. Vertical lines
denote the ranges of the layer hierarchy. The horizontal line is at 2.5, corresponding to κ = 0.4.

that the upper boundary tracks the position where the diagnostic function drops-off
precipitously. If, for a range of y+, there exists an exactly logarithmic mean velocity
profile this indicator function attains a constant value equal to 1/κ . For comparison,
a constant line at 1/κ = 2.5 (κ = 0.4) is also shown.

Figure 3 presents the inner normalized Reynolds stress gradient profiles for Couette
and channel flow. These functions are highly similar, as is the profile of dT +/dy+ for
the zero pressure gradient boundary layer (e.g. see figure 4 of Fife et al. 2005b). Closer
examination of these profiles in figure 4, however, reveals differences in the region
typically associated with logarithmic variation in the mean profile. The present theory
indicates that properties associated with the slope and curvature of the Reynolds
stress profile underlie logarithmic-like behaviour. The subtle differences between the
dT +/dy+ profiles account for the observed differences in the mean profiles of turbulent
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Figure 3. Profiles of the Reynolds stress gradient dT +/dy+ from channel and Couette flow.
Channel flow data are from Hoyas & Jimenez (2006): δ+ = 547, — — —; δ+ = 934, - - -; δ+ =
2003, —–. Couette flow data are from Kawamura, Abe & Shingai (2000): δ+ = 180, – – –.
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Figure 4. Expanded view of the dT +/dy+ profiles of figure 3. Profiles of β = dT +/dy+ + ε2

for each channel flow follow the same profile as dT +/dy+ in Couette flow.

wall-flows as well as provide insight regarding important dynamical processes (Fife
et al. 2005b; Klewicki et al. 2007). For example, the zero crossings in the channel
flow profiles reflect the position of the Reynolds stress maximum y+

m , which signifies
the transition from a force balance dominated by the viscous and Reynolds stress
gradients to one dominated by the pressure gradient and Reynolds stress gradient in
(2.3). This has relevance to figure 4 in that at each yβ

m, β =dT +/dy+ + ε2 in channel
flow, while in Couette flow at each yβ

m, β = dT +/dy+. Thus the differences between the
channel flow dT +/dy+ profiles and the Couette flow dT +/dy+ profile effectively equals
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ε2, and the β profiles as given by (2.8) are invariant to within less than the magnitude
of β at the large scale end of the hierarchy (i.e. smaller in order of magnitude than
the minimal value of β on the hierarchy). This analytical finding relating Couette and
channel flow is embodied in the invariance of the β curves in figure 4. Regarding this
comparison it is also relevant to note that the mean dynamics in Couette flow are
everywhere described by a balance between the viscous and Reynolds stress gradients,
while in channel flow they are described by the four layer structure given in Wei et al.
(2005a) of which layer II is described by a balance between the Reynolds and viscous
stress gradients. Thus, δ+ for Couette flow in many respects corresponds to the layer
II thickness in a channel flow, only at a much higher effective Reynolds number.

2.3. Logarithmic dependence

Properties associated with a logarithmic mean velocity profile follow directly from
the attributes of the layer hierarchy. Most prominent among these are that the mean
statement of dynamics can be written in an invariant form when normalized by the
appropriate local characteristic length of the hierarchy (2.7), and that the characteristic
widths of the Lβ scale according to (2.9). One consequence of these is that at each yβ

m

(ŷ =0) on the hierarchy the locally normalized curvature of the locally normalized
Reynolds stress becomes an O(1) quantity (Fife et al. 2005a,b),

A(β) = −d2T̂ β

dŷ2
(0). (2.10)

Since the hierarchy constitutes a continuum of layers, there is in fact a yβ
m at each y+

within the admissible range. Furthermore, relative to the computation of A(β) it will
prove useful to employ the alternative expressions,

d2T̂ β

dŷ2
= β−3/2 d2T +

dy2+
=

d2T +

dy2+

(
dT +

dy+
+ ε2

)−3/2

(2.11)

and

d2T̂ β

dŷ2
= β−3/2 d2T +

dy2+
=

d2T +

dy2+

(
dT +

dy+

)−3/2

(2.12)

for channel and Couette flow respectively. Other alternative but equally valid
expressions will be presented later.

The invariance of (2.7) and the individual terms in this equation at the periphery of
the Lβ centred on each yβ

m (see figure 1) supports the assertion that A(β) may attain
approximately constant values over an interior subrange of Lβ (Fife et al. 2005b).
Note that this is not an assumption, but simply a possibility. The degree to which
A attains constancy directly reflects the degree of self-similarity from one Lβ to the
next. That is, if A is exactly equal to a constant over some range of y, then across the
hierarchy of layers corresponding to that range of y there is exact self-similarity. By
considering the variation of yβ

m with β one may employ the definition of β and the
once integrated form of the momentum equation to derive differential equations for
the Reynolds stress profile and mean velocity profile (on the hierarchy) that contain
the O(1) quantity, A (Fife et al. 2005a,b; 2009). Under the condition that A equals
a constant (exactly or approximately), these expressions may be integrated and thus
analytically connect (2.3) to an equation for the mean profile. Specifically, the mean
profile expression on the layer hierarchy for both planar Poiseuille and Couette flow
is found to be

U+(y+) = (2/A)2ln(y+ − C) + D. (2.13)
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In (2.13) A is the O(1) function A(β) given by (2.10) and C and D are constants (Fife
et al. 2005a). If A is not exactly constant, then the resulting mean equation is bounded
above and below by logarithmic functions having the same form as (2.13) (Fife et al.
2005a). Note that the logarithmic formula found from the mean momentum equation
yields an offset in the argument of the logarithm. This fact has bearing on those studies
that have recently investigated this issue (e.g. Spalart, Coleman & Johnstone 2008).
Note also that (2.13) provides a definition for the leading coefficient that is free of any
adjustable constants. This equation reveals that the observation of logarithmic-like
behaviour is associated with the degree to which dynamical self-similarity (necessarily
approximate) is attained from one layer to the next on the Lβ hierarchy. Comparison
of (2.13) to (1.1) yields an independent definition for κ ,

κ =
A2

4
=

1

4

[
d2T +

dy+2
β−3/2

]2

=
1

4

[
d2T +

dy+2

(
dT +

dy+
+ ε2

)−3/2
]2

, (2.14)

and thus the constancy of the function κ is a direct measure of how closely exact
self-similarity is attained.

Equivalent forms for κ are available. These are useful for the purposes of computing
quantities from discrete data. By virtue of (2.3),

β = −d2U+

dy+2
, (2.15)

and thus,

κ =
1

4

[
d2T +

dy+2

(
−d2U+

dy+2

)−3/2
]2

. (2.16)

Similarly, consideration of the mean vorticity transport equation

0 =
d2Ω+

z

dy+2
+

d2T +

dy+2
, (2.17)

where Ω+
z = −dU+/dy+, yields

κ =
1

4

[(
− d2Ω+

dy+2

)(
− d2U+

dy+2

)−3/2
]2

=
1

4

[
d3U+

dy+3

(
−d2U+

dy+2

)−3/2
]2

. (2.18)

This last form will prove to give the lowest uncertainty in quantities computed from
data. This form is also physically intriguing as it speaks to the self-similarity in the
simultaneous processes of wallward momentum transport and wall-normal vorticity
transport (Klewicki et al. 2007; Eyink 2008).

Equations (2.9), (2.10), (2.13), (2.14), (2.16) and (2.18) directly arise solely through
consideration of (2.1).

3. Comparing theory and data
This section explores the analytical findings outlined above. Primary concerns are

the predicted properties of the layer hierarchy and the affiliated behaviours associated
with logarithmic dependence. The latter of these includes validation of the theory at
at least two increasingly stringent levels. The first relates to whether A(β) is indeed
O(1) within the analytically predicted bounds of the Lβ hierarchy. The second relates
to whether the data provide support for the specific prediction A2/4 � 0.4, i.e. (2.14)
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Figure 5. Characteristic lengths of the continuum of scaling layers in turbulent channel flow
as a function of y+, δ+ = 547, —— —; δ+ = 934, – – –; δ+ = 2003, ——. Horizontal lines,
— - — - —, denote approximate point at which β−1/2 deviates from a linear y dependence.

holds on a subdomain interior to the bounds of the Lβ hierarchy. Consistent with the
aims stated at the outset, data comparisons focus on understanding the nature of the
solutions to (2.1) and the affiliated physical implications.

3.1. Layer hierarchy

The principal elements relating to the layer hierarchy as predicted by the theory
pertain to (i) the existence of a parameter free invariant form of the momentum
equation on each Lβ , and (ii) the existence of the predicted characteristic length scale
distribution associated with the width of each Lβ . The former of these is strictly a
matter of analysis, and has been established. Thus, we focus attention on the latter.

The essential features of the Lβ are that they exhibit a linear dependence with
distance from the wall (increasingly so as δ+ → ∞), they exhibit this dependence
interior to y+ � 30 and y/δ � 0.5, and because of this the maximum characteristic
length associated with the hierarchy occurs near y/δ = 0.5. The continuous distribution
of the characteristic widths of the Lβ (2.9) are plotted across the entire channel half-
width in figure 5 for the three channel flow Reynolds numbers of Hoyas & Jimenez
(2006). As is clear, the characteristic lengths exhibit a linear variation with distance
from the wall. Furthermore, each of the curves break from this linear trend in the
range 0.45 � y/δ � 0.5. In each case, the maximal length (occurring at the end of the
hierarchy) is about δ/3. Interestingly, for y/δ > 0.5 the length scale function attains
a peak value and then drops below the peak value on the linear curve at about
y/δ = 0.75. This is made apparent by the variations about the horizontal lines on the
figure.

Figure 6 shows a close-up of the three channel flow profiles along with the Couette
flow profile of Kawamura et al. (2000). The four profiles convincingly merge to
a single profile for y+ < 120. Furthermore, in good agreement with the analytical
prediction these profiles begin to exhibit a linear-like trend for y+ greater than about
30. Interestingly, for 30 � y+ � 100 the slope of this part of the length scale profile
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Figure 6. Characteristic lengths of the continuum of scaling layers in the vicinity of the
wall in turbulent channel flows δ+ = 547, — — —; δ+ =934, – – –; δ+ =2003, —— (Hoyas &
Jimenez 2006) and turbulent Couette flow δ+ = 180, — - — - — (Kawamura et al. 2000).

is steeper than for y+ > 100. According to the theory, any linear dependence in the
length scale will lead to logarithmic-like behaviour in the mean profile, but a changing
length scale slope may trigger a change in the logarithmic slope of the mean profile.
The data of figure 2 clearly reveal that this is the case, as do the estimates for the
coefficient A(β) below. Previous studies provide evidence that the logarithmic mean
profile has a different slope for y+ < y+

m than for y+ >y+
m (Afzal 1982; Osterlund

et al. 2000). In the context of the present theoretical framework, this has to do with
the aforementioned fact that the mean force balance changes from one dominated
by the viscous and Reynolds stress gradients to one dominated by the Reynolds
stress and pressure gradients. The Couette flow profile in figure 6 reveals that the
upper boundary of the hierarchy is at about y+ =120. This corresponds to a length
of about 80, and thus the maximal length in Couette flow appears to be about
0.44δ, which is larger than observed in figure 5 for channel flow. The analysis of
Fife et al. (2005b) estimates that the maximal Lβ for Couette flow extends to within
about 12 % of δ from the centreline. Nominally, centring a layer having a width of

y+ =80 at y+ =120 puts the upper boundary at y+ � 160, or within about 11 %
from y+ = δ+ = 180.

The analytical findings of Fife et al. (2005b) indicate that the hierarchy will end
when β drops to an order of magnitude much smaller than (dT +/dy+)max/10 but
greater than O(ε4). The channel flow simulation data of Hoyas & Jimenez (2006)
confirm this result as the minimum β on the hierarchy (i.e. at y/δ = 0.5) is given by
about 12ε4 at all three Reynolds numbers.

3.2. Logarithmic dependence and κ

The above data bear out the veracity of the analytical results that predict the existence
and properties of the Lβ hierarchy. Given these properties, the continuous rescaling
of (2.3) that leads to the parameter free invariant form (2.7) on each Lβ establishes
that A(β) is O(1). It is a relatively simple matter to show that the range of possible
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Figure 7. Leading coefficient A(β) in logarithmic mean profile equation (2.13) as computed
using method 1 (2.14) from the δ+ = 2003, —–; and δ+ = 934, – – – data of Hoyas & Jimenez
(2006). Dotted line is at A = 1.265 corresponding to κ = 0.40.

characteristic lengths on the Lβ hierarchy increases with increasing δ+ (Fife et al.
2005a). From this, and the fact that β−1/2 becomes an increasingly linear function as
δ+ → ∞, one expects that for sufficiently high δ+ A(β) will become approximately
constant on an interior domain of the hierarchy, and that it will better approximate
a constant as δ+ → ∞. Even if this were not true, however, (2.13) still holds if A is
a constant, and if A is approximately constant the resulting mean profile equation is
bounded by logarithmic functions having the same form as (2.13).

It is appropriate to describe results for both the approximate and exact cases
for at least two reasons. The first is that from measurements one can only confirm
that the mean profile is logarithmic-like. The second and more substantive reason is
that analyses of the mean momentum equation (summarized in § 2) reveal that A is
explicitly a measure of the self-similarity of dynamical processes across some range of
Lβ . Thus, for example, imperfections in the boundary conditions, the non-constancy
of mean advection in boundary layer flow, or external influences on the hierarchy
owing to finite δ+ will essentially always result in approximate self-similarity from
one Lβ to the next. As noted previously, approximate self-similarly generically means
that A will only be approximately constant.

By virtue of the first equality in (2.14) what is true about the constancy (or non-
constancy) of A is also true about κ . The data presentation below supports the
assertion that A is approximately constant (�0.4) in an interior zone of the hierarchy
where logarithmic-like dependence is typically observed, and provides evidence that
the leading coefficient, traditionally expressed as the von Kármán constant, equals
A2/4.

We begin by demonstrating that computations of A that employ the direct use
of (2.14), (2.16) or (2.18) exhibit considerable uncertainty. This is because these
computations involve taking the ratio of higher order derivative quantities that are
also becoming decreasingly small with increasing y+. For example, figure 7 presents
the distributions of A in the region 30 <y+ < 400 for the two highest channel flow
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Figure 8. Leading coefficient A(β) in logarithmic mean profile equation (2.13) as computed
using method 3 (2.18) from the δ+ = 2003, —; and δ+ = 934, - - - data of Hoyas & Jimenez
(2006) and the δ+ = 1016, – – –; and δ+ = 636, —— — data of Kawamura et al. (2000). Dotted
line is at A =1.265 corresponding to κ = 0.40.

Reynolds numbers of Hoyas & Jimenez (2006) computed using (2.14). This equation
purely employs the derivatives of T +, which are expected to be noisier than those
of U+. These data are well behaved near the wall, and then begin to oscillate about
a non-zero mean. As indicated by the horizontal dotted line, this non-zero mean
appears to be close to κ = A2/4 = 0.4 (A= 1.265). In the region 30 � y+ � 100, the
data of figure 7 attains an approximately constant value that lies above the κ = 0.4
line. This is in accord with the observed change in the slope of the characteristic length
distribution as noted relative to figure 6, and confirmed by the logarithmic indicator
function of figure 2. For y+ > 100 the excursions are increasingly large and infrequent.
A rough estimate of the average value of A can be obtained by considering an even
number of positive and negative oscillations. Estimates obtained by averaging between
the start of the hierarchy (y+ � 30) and the indicated vertical lines for δ+ =934 and
δ+ = 2003 yield A= 1.296 (κ � 0.42) and A= 1.234 (κ � 0.38), respectively. Owing to
the obviously high uncertainties it is emphasized that these values are only viewed
as rough estimates. Note also that the indicator functions in figure 2 clearly reveal
that the slope noticeably varies in the region generally attributed to logarithmic
behaviour, i.e. the profile slope is a slowly varying function. In fact, however, the
present theory indicates that this is essentially always the case. The leading coefficient
is never expected to be exactly a constant, but only better approximate constancy
as δ+ → ∞. The channel flow results of Kawamura et al. (2000) (at δ+ = 636 and
1016) and those of Moser, Kim & Mansour (1999) (at δ+ = 587), with derivatives
computed using the Chebychev polynomial method employed in the original DNS,
have also been tested but are not shown. These exhibit essentially identical results to
those displayed in figure 7. Estimates of A using (2.16) exhibit results that are also
similar to those shown in figure 7.

Since it only employs derivatives of the mean velocity, computations using (2.18)
are expected to be more well behaved than those using (2.14) or (2.16). Figure 8
reveals that this is indeed the case. In this figure the region 30 � y+ � 100 is shown
to be one of continuously varying A corresponding to the continuously varying curve
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Figure 9. Smoothed δ+ = 636, 1016 and 2003 profiles of figure 8. Dotted line is at
A = 1.265 corresponding to κ = 0.40.

in figure 2 over the same y+ range. A conventional average over the entire domain
of each Lβ hierarchy yields A= 1.303 (κ � 0.42) at δ+ = 636, A= 1.230 (κ � 0.38) at
δ+ = 947, A= 1.285 (κ � 0.41) at δ+ =1016 and A= 1.266 (κ � 0.4) at δ+ = 2003. The
data of figure 8 also verify that the behaviour of A and its relation to κ is strictly
confined to the Lβ hierarchy. That is, as the hierarchy is exited near y/δ = 0.5 figure 8
indicates that the curves transition from fluctuating about A= 1.265 (κ = 0.4) to
fluctuating about A � 0. This transition at the large scale end of the hierarchy is
more clearly demonstrated in figure 9, which was obtained by repeatedly applying a
Savitzky–Golay smoother to the δ+ = 636, 1016 and 2003 data.

Overall, the estimates derived from figures 7 and 8 exhibit considerable uncertainty.
Even so, they are consistent with the theoretical predictions that over an interior
domain A is bounded and that A2/4 � 0.4. These figures also reveal that the
detailed exploration of the present theory will have to rely on other, less sensitive,
computations.

3.3. More precise estimates of the leading coefficient

Thus far the data presentation provides substantive support for all of the theoretical
predictions outlined in § 2 regarding the existence and nature of logarithmic
dependence. In this regard, an inherent and overarching notion is that this leading
coefficient A2/4 is not a constant, but rather an O(1) quantity that may attain
approximate constancy on the Lβ hierarchy depending on whether a specific type of
dynamical self-similarity is obtained from one Lβ to the next. Relative to the aims
articulated at the outset, this constitutes a precise elucidation, within the context
of the relevant dynamical mechanisms, of how, why and under what conditions
logarithmic-like dependence occurs. Overall, one may reason that the answers to such
questions are both intellectually more interesting and scientifically more important
than the precise value of this coefficient κ that is often taken to be a constant.

Largely owing to technological applications there has been considerable interest
within the wall-turbulence community in computing the precise value of κ over a given
y+ range. Of course, such computations implicitly operate under the supposition that
κ is indeed a constant, while the present analyses reveal that this supposition only
constitutes a theoretical ideal. The theory does indicate, however, that with increasing
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Reynolds number variations in the leading coefficient will become increasingly difficult
to discern experimentally.

We now obtain better estimates for the value of κ under the assumption that
it behaves like a constant over some y+ range. Unlike previous approaches to
determining κ , the methods below utilize independent theoretical predictions. In
this context, it is worth reiterating that the data in figure 2 show that for the given
Reynolds numbers the slope of the mean profile noticeably varies in the region
typically identified with logarithmic-like behaviour. For any computation that seeks
to assign a single (average) value to κ over some y+ range (y+

1 , y+
2 ) this single value

must fall between the minimum and maximum values of (y+dU+/dy+)−1 between y+
1

and y+
2 . Below we validate to this level of uncertainty. In this regard, it is also worth

noting that the veracity of the present theory is the only apparent reason to expect
that the present estimates should fall between these bounds, or for that matter even
behave anything like a constant.

3.3.1. Effective derivative method

As just mentioned, κ =A2/4 owing to a specific type of self-similarity. This self-
similarity is reflected by (2.10) rewritten as

Aβ3/2 = −d2T +

dy+2
(3.1)

or in terms of velocity derivatives

A

(
−d2U+

dy+2

)3/2

=
d3U+

dy+3
. (3.2)

Now if one supposes that κ is truly constant, then so is A, and one may define an
effective third derivative (

d3U+

dy+3

)
e

=
√

4κ

(
−d2U+

dy+2

)3/2

. (3.3)

Equation (3.3) provides the basis for an error minimization process to determine
the optimal value of κ . Namely, κ is adjusted until the average absolute difference,

〈
〉 =

〈∣∣∣∣
(

d3U+

dy+3

)
−

(
d3U+

dy+3

)
e

∣∣∣∣
〉

, (3.4)

is minimized over some y+ range. In this way, minimizing the average deviation
from the theoretical ideal is used to estimate κ . Of course, it should be noted that
this method requires reliable measurements of higher order velocity derivatives. This
presents a formidable experimental challenge, and at present essentially restricts the
method to employing DNS data.

Figure 10 graphically depicts the results of this process over the range 120 �
y+ � 400. The absolute value of the difference between

(
d3U+/dy+3

)
e
and d3U+/dy+3

as a function of y+ is also presented. It is relevant to note that the ratio of this
difference to the value of d3U+/dy+3 ranges between 0.1 and 0.01, and thus the
effective signal-to-noise ratio is quite large. By varying κ the minimum average
difference over the given y+ range is found to be 4.45 × 10−8, and the associated
estimate for κ is 0.379. No special significance is attributed to this precise value owing
to the fact that in reality the leading coefficient is not exactly constant. Note that this
assertion is independent of the fact that the analysis employs relatively low Reynolds
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Figure 10. d3U+/dy+3 profiles as computed directly from the δ+ = 2003 simulation results
of Hoyas & Jimenez (2006), —; and using the profile of d2U+/dy+2 from the same DNS
and (3.3), - - -. The optimal value of A = 1.232 (κ =0.379) minimizes the absolute value
of the difference 
= |(d3U+/dy+3) − (d3U+/dy+3)e| averaged over the specified range
120 � y+ � 400, 
(y+), .......; 〈
〉 = 4.45 × 10−8, — - — - —.

number data. Rather, it is based upon the analytical prediction of the theory indicating
that over an internal domain the leading coefficient will asymptotically approximate
a constant. Thus, at any δ+ one should expect to obtain a slightly different value for
κ if the average is computed over a different range of Lβ . For comparison, over the
same y+ interval the δ+ = 2003 indicator function in figure 2 ranges between 2.41 and
2.71 (corresponding to 0.369 � κ � 0.415) with an average value of 0.384. If one is
interested in associating κ with inertially dominated flow, then the y+ range selected
should be outside layer III as prescribed by Wei et al. (2005a), i.e. over a range of
y+ values on the hierarchy for y+ � 2.6

√
δ+. Indeed, close examination of figure 2

reveals that the δ+ =547 and 934 curves break from the δ+ = 2003 curve very near
y+ = 2.6

√
δ+.

The data presentation of figure 10 also makes a statement about the veracity of the
theory as reflected by (2.10) and how this similarity statement analytically connects
the governing differential equation (2.2) to its solution for the mean profile (2.13).
Succinctly, over the range 120 � y+ � 400, the present theory agrees with the DNS
profile of d3U+/dy+3 to within an average difference of 4.45 × 10−8. This estimate
includes the uncertainties associated with the simulation, the presumption that κ

equals a constant, the low Reynolds number effects on the linearity of the β−1/2

distribution, and our capacity to estimate the third derivative using simple finite
differences. Of course, uncertainty statements constructed in this manner also depend
on the y+ range considered.

3.3.2. Slope of the characteristic length scale distribution

Equation (2.10) provides a fundamental statement about the nature of the dynamical
self-similarity on the Lβ hierarchy. As recently pointed out to the authors by S. Guntur
and F. Mehdi the product of quantities in (2.11) may be expressed in the form of a
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Figure 11. Characteristic length distribution of the Lβ hierarchy in turbulent channel flow
at δ+ = 2003, – – –. Linear fit (W = 0.6247y+ + 5.61) of the distribution between 118 � y+ �
667, ——.

single derivative

dβ−1/2

dy+
= −1

2

[
β−3/2 d2T +

dy+2

]
. (3.5)

By virtue of (2.9) and (2.14) one finds that

dW (y+)

dy+
=

A

2
=

√
κ. (3.6)

Equation (3.6) conveys much about the nature of wall turbulence. For the present
purposes it is perhaps most significant to note that it explicitly reveals the connection
between logarithmic-like behaviour and the asymptotic linearity of the Lβ width
distribution, W (y+). Figure 11 re-plots the δ+ = 2003 profile of figure 5 along with a
linear fit of this distribution over the range y+ > 2.6

√
δ+, y/δ < δ/3. As can be seen, the

data adhere closely, but not perfectly, to a straight line. The slope of the line is given
by 0.6247±0.0027, where the uncertainty is expressed as one standard deviation of the
coefficient variation about its mean. This estimated slope corresponds to a prediction
for the leading coefficient of 0.387 � A2/4 � 0.394. As with the effective derivative
based estimate, this range of values is bounded by the minimum and maximum
values of (y+dU+/dy+)−1 over the given y+ interval. It is also worth noting that (3.6)
generally constitutes a more experimentally approachable means of estimating κ than
the method depicted in figure 10.

4. Discussion and conclusions
The results presented herein support the first-principles-based theory developed

in Wei et al. (2005a) and Fife et al. (2005a,b, 2009). The existence and properties
of the Lβ layer hierarchy as derived from the theory are precisely demonstrated
in the simulation data. Similarly, the data were shown to also strongly support
the theoretically predicted features describing how and why logarithmic dependence
occurs. Specifically, an explicit formula for κ was convincingly shown to hold. In its
most fundamental form this equation represents the second derivative of the Reynolds
stress evaluated at yβ

m on each Lβ and normalized using the characteristic length on
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each Lβ . For the purposes of computation, other more convenient but equally valid
forms (e.g. (3.6)) were employed.

The factors underlying when κ might approximate a constant are consistent with
the observed robustness of logarithmic-like behaviour, as well as the long-standing
difficulty of precisely determining the value of κ . The present theory makes it clear
that by its very nature logarithmic dependence is approximate, and that through
describing this approximate behaviour the underlying dynamical mechanisms are
revealed. The constancy of κ directly measures the level of dynamical self-similarity
from one Lβ layer to the next. In planar channel flow, the approximate nature of κ

stems from the influence of finite Reynolds number owing to the asymptotic linear
behaviour of β−1/2 and the likely contamination of the hierarchy from ‘edge effects’.
In boundary layers it results from these influences, along with the fact that unlike
the 1/δ+ term in (2.2) the mean advection term is not constant across the layer and
develops slowly in x. The variation of this term will influence the β−1/2 distribution.

A number of methods were explored relative to estimating the leading coefficient,
A2/4. While all of these methods are analytically equivalent, some are more amenable
to computation using data. Methods stemming directly from the fundamental
definition of A (defined in (2.14), (2.16) and (2.18)) were shown to exhibit considerable
uncertainty. They did, however, provide evidence that A is bounded on the hierarchy
and attains values close to 0.4. The effective derivative method of figure 10 produced
a much less uncertain estimate, but owing to the data requirements can currently
only be used in conjunction with numerical results. The length scale slope method
(3.6) also exhibited low uncertainty. This computation involves a single derivative,
and thus will likely prove to be more appropriate to use with experimental data. Both
the effective derivative and the length scale slope method produced estimates for κ

that fell between the κ bounds given by the indicator function of figure 2 over the
relevant y+ range.

A number of the implications of the present theory have been discussed in the
references cited herein, and thus will not be repeated. Instead, we provide a brief set
of clarifying statements.

At any given Reynolds number, logarithmic-like behaviour, if it exists, occurs owing
to an approximate dynamical self-similarity on an interior domain. The existence
of approximate self-similarity under such conditions has long been observed (e.g.
Barenblatt 1996).

The use of the test function T β reveals that the layer hierarchy is composed
of an array of force balance breaking and exchange layers of increasing scale. In
all likelihood, this property is a statistical signature having association with the
dynamical evolution of hairpin-like vortices and/or vortex packets known to exist
(e.g. Adrian, Meinhart & Tomkins 2000; Marusic 2001; Ganapathisubramani,
Longmire & Marusic 2003; Wu & Moin 2009).

Equation (2.14) reveals that κ is a measure of the similarity between the turbulent
force (dT +/dy+) and the gradient of this force. Equation (2.18) reveals that this same
similarity condition simultaneously exists between the mean vorticity gradient and
its rate of change. The equivalence of the processes by which mean momentum is
transported toward the wall and mean vorticity is transported away from the wall has
been rigorously shown (Eyink 2008). Other analyses indicate that the connections
between these two simultaneous processes are likely to be associated with the
properties of the Lamb vector (ω × u) and its derivatives (Hamman, Klewicki &
Kirby 2008).



On the logarithmic mean profile 91

Equation (2.13) can be found from (2.3) and its boundary conditions via a cogent
set of mathematical steps. Given the indeterminacy of (2.3), this implies its closure.
Broadly speaking, closure of (2.3) requires an additional equation that relates T to
U . The present theory implicitly accomplishes this on the Lβ hierarchy through the
similarity statement (2.10). Under perfect self-similarity A= const , and thus from one
Lβ to the next,

A

(
−d2U+

dy+2

)3/2

=
d2T +

dy+2
. (4.1)

This expresses a constraint on the profiles of U and T that supplements (2.3).
The condition (4.1) is not imposed, but rather emerges as an increasingly well-
approximated property of the mean dynamics as δ+ → ∞. This is made apparent by
the fact that (4.1) is not hypothesized. Instead, it is derived through the process of
solving for the differential transformations that render (2.5) invariant and parameter
free (i.e. (2.7)) on each Lβ of the hierarchy. Among other things, this same analysis
also produces a first-principles-based origin for the distance from the wall scaling that
is often assumed in wall-flow studies.

To the authors’ knowledge, the present theory is unique in its first principles based
approach, and in its capacity to provide an independent and explicit equation for
κ . (As noted in Fife et al. (2005b), this equation has an interesting similarity to
the representation of the mixing length as the ratio of derivatives as first proposed
by von Kármán (1930).) As made clear by Fife et al. (2009), the present theory
has no apparent connection to theories based upon the hypothesis of an overlap
layer as first formulated by Millikan (1939) and Izakson (1937), and as pursued by
numerous researchers (e.g. see Afzal 1982; Panton 2005; Buschmann & Gad-el-Hak
2007; Monkewitz, Chauhan & Nagib 2008 and the references therein).
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